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The framework of the theory of thin elastic shells is used to obtain the solution 
of the problem of impressing identical sharp dies into a shell along circumferen- 

tial arcs. The edges of the dies are assumed to be perfectly rigid, are of const- 

ant radius and have no corners. The character of the reactions of the dies and 

the size of the zone of contact is established. 
It is shown that despite the absence of sharp corners the reactions of the dies 

increase without bounds near the edges of the zone of contact and have a root- 

type singularity. 
The solution of the problem is constructed with the help of the theory of sing- 

ular integral equations and is reduced to a linear system of algebraic equations. 

1, Consider a thin elastic cylindrical shell of infinite length (Fig. 1) compressed by 
nr equal sharp dies (the figure illustrates the case tn = 2).The curvature of the sharp 

edge of the die is assumed constant and equal to 1 i Rr.The general case when the edge 

curvature is variable is treated in the analogous manner. The die edge is assumed to 

be perfectly rigid. An external force P / rn applied to each die produces a zone of cpn- 

tact characterized by the angle 0 (Fig.1.) Neglecting the friction between the shell 

and the die we can reduce the problem to that of determining the normal reaction q, 
acting from the direction of the die on the shell and the magnitude of the zone of con- 

tact 6. The linear theory of shells presupposes that either the angle 6 is small, or that 
the radius of the die edge differs little from the radius R of the shell. 

Assuming that within the zone of contact the shell (of thickness h) is in close contact 

with the die, we obtain the initial equation of the problem by assuming the bending 
deformation of the shell under the die to be equal to i / RI - i I R. 

Using the results of [l] we can write the bending deformation of the shell on the line 
of contac -0 < q~ < 6 in the form 

a T mcp, 

cm b K (a - an) = 2 -T;” cos k (a - a~) 

Ii=1 
? 

bk=-ij+ 2 (ajcj + bjdj), n=lim 

j=l 

(1.2) 

(1.3) 

nj T 4.+7;” nj f 4llpj” 
clj = 

*j (pj’?- qj’) 

b, = 
’ 

Pj (Pj’ -t- ‘lj’l) ’ 

pj + iqj = Ilj 
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Fig.1. 

Bj = AZ ?: 4 (P?g12 - iA’) 

A = ~1~ - ql= - ~2’ + qz= 

A = [4’ + 4 (m1 -I- ~~01 iAa + 4 (m, - 

- w721 
where f&j are the roots of the characteristic equ- 
ation [I]. the upper sign corresponds to 1 = I, 
and the lower sign to j = 2. 

For a shallow shell we have 

The first term in (1.1) represents the principal 
part of the Green function for the deformation 

x2 and the quantityli: (a - CL,,) is a regular kern- 

el. 
The initial equation of the problem will, in 

accordance with the previous statement, have the form 

P 

s I In 2sin- a;‘” 1 qdao = 5 K (a-m) qdqt--oom 

4 4 
(1.4) 

Its solution which will obviously be even when 00 = conat obeys the condition 

P 

s 

. 
(I cos s&z+ (1.5) 

--P 

HereP / mdenotes the external force applied to the die (F&l). Condition (1.5) COIUI- 
ects the angle 8, characterizing the size of the zone of contact with the external force 
I’. 

It appears that the most rational method of investigating the integral equation of the 
first kind (1.4) would involve its transformation into a Fredholm’s integral equation of 
the second kind. This would expose the character of the reaction and allow the use of 

the examples of already known solutions. We shall perform the transformation by solvi- 

ng (1.4) under the assumption that its right-hand side is known. An analogous procedure 
is adopted in regularizing singular integral equations (the method of Carleman rZ]) and 

the process is equally applicable to the present case [3]. 

2. Consider the equation 

n 

s I a - afl 
In 2sinT (Ida = f (a01 

--d 

(2.1) 

where f tan) is a known, even function. The following is the simplest method of soluti- 

on. Integrating the left-hand side by parts we reduce (2.1) to the form 
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P 

c 1 
2ctl3 2 =Qda=A&lX(ao)--~(a0) 

La 

Q={Ma. 

P 

Al = 2 qda, 
c 

X(a) = 1/Z (co9 a - co9 P) 

0 ;, 

(2.2) 

(2.3) 

Substitution of t = eiainto (2.2) yields a singular integral equation with a Cauchy kem- 
el. whose solutions are known [3]. The physical condition of integrability of q requires 

by virtue of (2.2), that the function Q has a bounded solution. Such solution will be uni- 
que and on returning to the previous variable a it will assume the form 

P 
X (ad 

Q@o)=-7 s At in X (a) - f (a) 
X (a) sin r/a (a - a0) 

da 

--P 

This solution exists provided that the condition 
P 

s AllnX(a)-j(a) 
X (a) 

cos -+da=O 

4 

(2.4) 

(2.5) 

holds. We have the following differentiation formula 

This formula holds for any function f (a) such that the function X (a) f (a) is continuous 
and vanishes at the end points of the fnterval(-6, fi).The formula is proved by passing 
to the variable t = exp (ia)in its left-hand side and performing certain transformations, 

as well as making use of a well known theorem according to which the limit value of 

the derivative of a Cauchy-type integral is equal to the derivative of its limit value. 

The solution of (2.1) is obtained, in accordance with (2.3), by differentiating (2.4) 
and taking into account both,the formula (2,6) and the value of the integral 

P 

s d In X(a) da 
x(a) da sin r/2 (a - ao) 

--P 

(2.7) 

This solution has the form 
P 

1 cl1 
q (ao) = 2xaX (a0) s X (a) 

1’ (a) da -I- 7 
cos ‘/a a0 

sin l/r (a - a0) X (a0) (2.8) 
--P 

The constant Al is obtained from the condition (2.5) which, after computing the integral 
of In X (a) becomes 

D 1 
A1 1nsinT = ‘;; 

’ t(a) c 
& 

- cos $- da 
X (a) 

(2.9) 

Thus Eq. (2.1) has a unique solution unbounded at the end points and fully defined. 
An alternative method of solving (2.1) may be found e. g. in [4]. Equations of the type 

(2.2) belong to the class of equations with automorphic kernels [S]. A method for their 
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solution is given in [S]. 

3. Inserting now Eq, (2.1) into the solution (2.8) and replacing the function f (aI in 

the right-hand side of the initial equation (1.4) with Eq. (2.9), we obtain the Fredholm 
integral equation of the second kind for determining the reaction q as well as an equa- 
tion defining the constant Al. Changing the order of integration in the repeated integrals, 
solving the integrals and taking into account the parity of the solution of Q we obtain 

the above-mentioned equations in the form 
5 

Q (ad + nX:ao) c R (al, ao) qdal = 
AI co.5 +a,- 

, nX (a0) 

Alnsin+= 
* 

\ Y (pl) qdal - oom 

(3.1) 

(3.2j 

R (at, a,) = 2 Ok cos h-adk (ao) 
k=l 

(3.3) 

(3.4) 

Here P,,. = Pk (cos $)are the Legendre polynomials which were computed with the aid 
of the following integral representation p] 

F 

s X (a) sin ka 
da 

sin I/Z (a - ao) 
(3.5) 

--P m=o 

no= 1, al = - cos 3, 
Pm-? - P”, 

a m = 2nr - I 
(m = 1,3, . . .) 

The integrals (3.5) were found by changing the variable to t = e”and applying the the- 
orem of residues [S, p. 3981. Equation (3.1) has a unique solution which is unbounded 

at the end points and possesses a singularity of the type i / X (a), where .I’ (ahs a canon- 

ical function given by (2.3). 
‘This solution is fully defined if the size of the zone of contact 9 is given. The latter 

is determined by (1.5). It should be noted that the concentration of the reaction at the 

boundary of the zone of contact is also observed when a plate is in contact with a rigid 
surface [9], when two shells are in contact, etc. A similar phenomenon distinguishes 

essentially the contact problems of the theory of elasticity where the normal reaction 
vanishes at the boundary of the zone of contact in the case when the die has no sharp 
corners. This follows from the specific properties of the equations of the theory of shells 
constructed in accordance with the Kirchhoff-Love hypothesis. 

4, Omitting the investigation of convergence of the series (1.2). we quote the values 
of its coefficients (1.3) for the shells of diameterR / ir = luirand m = 2 
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k 
- b/J@ Si!A 

-&O’ 4,‘; 

The coefficients f~k decrease at 
(3.3) after df terms we obtain, 
Its solution has the form 

3 5 .7 
4S3Y isoi 6’9 _ 25: 11: 68!i 

large values of R = n&as 1 / d. Terminating the series 
instead of (3.1). an equation with a degenerate kernel. 

;\I 
q _ .“I?! !‘a) , 

il.1 (2) 
y (a) =cos+ -2 Ckbk i a, cos (k-s + +)u (4.1) 

k=l s-0 

Here bk and a6 are the coefficients given by (1.3) and (3.6). Ck are the coefficients de- 
termined from the solution of the following system of algebraic linear equations 

.\I 

Ch. i zz ek,,C,, = - ; (Pk f&-l) (k = i, 2, . . . , .If) (4.2) 
n=t 

0, (Pn_s+k f Pn-s-k) (4.3) 
s=o 

I)~ = Iah. (cos /3) are the Legendre polynomials and P_, = P,-l. The constant Al is ob- 
tained from (3.2) by inserting into it the expression (4.1) for q . Solving the integrals 
then yields 

Bf -1 

/11 =-worn In sin - 3 - 
2 

+ 2 9 (Pk + pk_1) 1 (4.4) 
k==l 

The connection between the external force P and the size of the zone of contact is gi- 

ven by (1.5). Expandingcos (a / m)into a series incos naand inserting qfrom (4.l).we 
reduce (1. 5) to the form 

m=l 

31 
P 2m . s - = Al- SIrl - 
II 

$-g 2 &b$ ll,P&_,+ 5 ‘,;;I? (m > 1) (4.5) 
s m 

L=1 s=o n=1 

where Ck is the solution of (4.2). The first formula of (4.5) can also be used when 
m > I for small 6, in which case coa (a i nz) =: cos a. 

We note that /3 < rr always, since for fl = II the quantity Al = 00 by (4.4) and this 
corresponds to an unlimited external force P. 

Equation (3.1) can also be solved numerically using the numerical integration form- 
ulas. In this case however, a new variable 2, defined by sin Vla = sin l/, 6 sin lltt must 
be used. This alters the limits of integration from (-fi, fi)to (-n, x)and makes the ex- 
pressions under the integral sign bounded (da / X tar) = dr / 2 co9 ‘/~a). 

Figures 2 and 3 depict the results of numerical computations for a shell whenR / h = 
= 100, ?If z 2. 1 - R / Zi’, = 0.01, ill = 20. For.11 - .GOthe other parameters change 
by less than 1 SO. 
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